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SUMMARY 
 

 The 1200 to 1400 K slow strain rate characteristics of the directionally solidified (DS) eutectic Ni-33Al-31Cr-
3Mo have been determined as a function of growth rate. While differences in the light optical level microstructure 
were observed in alloys grown at rates ranging from 7.6 to 508 mm/h, compression testing indicated that all had 
essentially the same strength.  The exception was Ni-33Al-31Cr-3Mo DS at 25.4 mm/h which was slightly stronger 
than the other growth velocities; no microstructual reason could be found for this improvement. Comparison of the 
~1300 K properties revealed that four different DS NiAl-34(Cr,Mo) alloys have a similar creep resistance which 
suggests that there is a common, but yet unknown, strengthening mechanism. 
 

 
INTRODUCTION 

 
 Directionally solidified (DS) systems based on the NiAl-34(at.%) Cr eutectic are under consideration as pos-
sible replacements for Ni-based superalloys exposed to severe temperature, stress, and environment conditions. The 
unique microstructures created during directional solidification, in the form of aligned ~1 µm diameter Cr fibers in a 
NiAl matrix for NiAl-34Cr (ref. 1) or aligned micron thick alternating NiAl and α-(Cr,Mo) lamella in NiAl-(34-x) 
-xMo (x > 0. 6 percent) (ref. 2), result in both good elevated temperature creep strength and reasonable room 
temperature toughness (refs. 3 to 9). In particular the improvement in creep properties is remarkable compared to 
those of the constituents: for example the 1300 K – 10–7s–1 strength of DS NiAl-34Cr is about 100 MPa (ref. 3); 
whereas polycrystalline NiAl (ref. 10), [100]-oriented NiAl single crystals (refs. 3 and 11) and large grain size Cr 
(refs. 12 and 13) would require only 10 to 15 MPa to deform at these conditions.  
 Since the early work by Cline and Walter (ref. 2) did not report a clear dependency between the “goodness” of 
alignment and mechanical properties for NiAl-34Cr based eutectics, NiAl-31Cr-3Mo was DS at rates ranging from 
12.7 to 508 mm/h and subjected to both room temperature toughness and elevated temperature slow strain rate 
compressive testing (ref. 6). The initial results indicated that 1200 and 1300 K strength properties were similar for 
all the growth rates. This paper extends the preliminary study on the elevated temperature properties of DS NiAl-
31Cr-3Mo as a function of growth rate to include an as-cast alloy, a very slowly grown eutectic (7.6 mm/h), testing 
at 1400 K, and a few constant load creep experiments to achieve slower strain rates. The strength properties of  
DS NiAl-31Cr-3Mo are examined in light of the available microstructural data and are compared to those for other 
NiAl-34Cr based eutectics. Lastly, potential mechanisms responsible for the high strength of DS NiAl-(Cr,Mo) 
eutectics are examined. 
 
 

EXPERIMENTAL PROCEDURES 
 
 The methods used for casting the prealloyed NiAl-31Cr-3Mo rods and for directionally solidification to 
produced aligned eutectic bars at growth rates ranging from 7.6 to 508 mm/h are completely discussed in (refs. 6, 7, 
and 14). Since the original bar grown at 7.6 mm/h in ref. 6 was significantly off chemistry (28.6Al instead of 33Al), 
a new bar was DS at this rate utilizing an as-cast rod with the correct composition. Compression specimens were 
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taken from the aligned region of each DS bar by wire electrodischarge machining (EDM). The compression 
specimens were 8 by 4 by 4 mm in size with the 8 mm sample length parallel to the growth axis, and they were 
tested in the as-EDM’ed surface condition. A set of compression samples was also machined from an as-cast rod 
(the one partially utilized for the DS run at 12.7 mm/h) in order to access the strength improvement from directional 
solidification; the long axis of these samples was parallel to the length of the casting.  
 Elevated temperature compressive strength properties were mainly determined by constant velocity testing 
which was supplemented with a few constant load creep tests.  A screw driven universal testing machine was 
utilized for constant velocity testing, where samples were compressed between two solid push bars at 1200 to  
1400 K in air at crosshead rates that varied from 1.7×10–2 to 1.6×10–6 mm/s. The autographically recorded load–time 
curves were converted to true stresses, strains and strain rates via the offset method in combination with a 
normalization to the final specimen length and the assumption of a constant volume. Constant load compressive 
creep experiments were undertaken in a lever arm creep machine, where time dependent deformation was 
determined by measurement of the relative positions of the ceramic push bars applying the load to the specimen.  
All the contraction–time data from creep testing were normalized with respect to the final specimen length and 
converted into true stresses and strains assuming that the sample volume was constant.   
 
 

RESULTS 
 

Materials 
 
 Characterization of the chemistry of the individual as-cast rods and DS bars are reported in (refs. 6, 7, and 14), 
and the compositional control was very good. Grouping all the bars DS between 7.6 and 508 mm/h together, the 
average composition was Ni-33.4Al-31.2Cr-2.9Mo with standard deviations of 0.6 at.% for Al and Cr, and  
0.1 percent for Mo; each bar also contained about 0.14 percent Si and small amounts of C (~0.06 percent),  
N (~0.001 percent) and O (~0.02 percent). The as-cast rod, which was compression tested in this study, had the 
following composition: Ni-33.3Al-31.1Cr-3.0Mo with 0.013Si-0.07C-0.007N and 0.07O. The higher Si content in 
the DS rods in comparison to the as-cast bars is probably the result of long exposures during solidification in 
crucibles which contained a SiO2 binder. 
 Transverse microstructural sections of the DS rods illustrated that large diameter lamellar eutectic grains with 
sharp boundaries formed (fig. 1(a)) at and below growth rates of 12.7 mm/h, while at higher velocities ~200 µm 
diameter cellular structures bounded by relatively thick intercellular regions developed (fig. 1(b)). The lamellar 
eutectic grains were composed of alternating NiAl and α-(Cr,Mo) plates while the cells contained lamellae in a  
radial-like pattern which some cases terminated and in other cases coarsened to form the intercellular regions. The 
as-cast microstructure transverse to the casting direction is illustrated in figure 1(c), where cells containing a fine 
pearlitic structure were surrounded by relatively wide intercellular regions. Examination of longitudinal sections of 
the DS rods (refs. 6 and 14) indicated that both the lamellar eutectic grains and cellular grains were mm’s in length; 
however the lamellae were not always parallel to the growth direction. Additional details about the microstructures 
of DS NiAl-31Cr-3Mo as a function of growth rate are given in (ref. 6) and extensive quantitative measurements are 
presented in (ref. 14).  
 

Compressive Properties 
 
 Examples of the true compressive stress–strain diagrams from 1300 K constant velocity testing of Ni-33Al-
31Cr-3Mo are presented in figure 2 as a function of nominal strain rate. The curves for as-cast samples (fig. 2(a)) 
are similar in appearance at each imposed strain rate, where, in general, rapid work hardening occurred through  
~1 percent strain and is followed by continued deformation at a more or less constant flow stress. The stress–strain 
diagrams for specimens taken from the bar grown at 12.7 mm/h (fig. 2(b)) are similar to those for the as-cast alloy 
except they tend to exhibit slow strain softening after reaching a maximum stress. In terms of general behavior  
figure 2 illustrates that strength decreases with decreasing strain rate, the compressive properties are reproducible 
(i.e., two tests at ~2×10–7s–1, fig. 2(b)), and at any strain rate the DS version is stronger than the as-cast alloy. Testing 
of all the directionally solidified bars of Ni-33Al-31Cr-3Mo between 1200 and 1400 K and the as-cast alloy at  
1200 and 1400 K produced stress–strain curves similar to those shown in figure 2. A number of additional stress–
strain curves for directionally solidified materials as a function of growth rate are given in (ref. 6). 
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 Typical 1300 and 1400 K constant load compressive creep curves for a directionally solidified alloy are 
presented in figure 3. On initial loading the specimens displayed normal primary creep, where the instantaneous 
deformation rate decreased with time, until steady state creep was established. As illustrated in this figure, several 
directionally solidified samples were step loaded to higher stress levels during testing. While only a few samples 
were studied in this manner, step loading did not lead to a normal primary creep response. Invariably after a load  
increase, the directionally solidified samples transitioned almost immediately into steady state creep which 
eventually lead to tertiary creep. 
 True flow stress (σ)–strain rate ( ε� ) behavior for the as-cast Ni-33Al-31Cr-3Mo (solid circles) and all the  
directionally solidified bars are presented in figure 4 as a function of temperature (T). In these plots the flow stresses 
taken from constant velocity testing are represented by the stress at 1 percent strain from the stress–strain curves 
(fig. 2), while the flow stresses from creep testing are arithmetic averages calculated over the steady state regimes 
(fig. 3). By visual inspection the data in figures 4(a) to (c) indicate that directional solidification of Ni-33Al-31Cr-
3Mo between 7.6 and 508 mm/h provides a clear strength advantage over simple casting between 1200 and  
1400 K. Furthermore, with the exception of the weakness at faster strain rates (1200/1300 K > 10–5s–1; 1400 K  
> 10–3s–1) displayed by the eutectic grown at 7.6 mm/h, the elevated temperature strength properties of DS Ni-33Al-
31Cr-3Mo do not appear to be strongly dependent on growth rate. 
 Examples of the temperature dependence of the true flow stress–strain rate results for the as-cast and DS alloys 
are illustrated in figure 5. While the as-cast alloy (fig. 5(a)) displayed linear behavior over the entire test range in a 
stress–logarithm strain rate format, only portions of the flow stress–strain rate–temperature data for the directionally 
solidified versions could be linearized by either a stress–logarithm strain rate format (fig. 5(b)) or a logarithm  
stress–logarithm strain rate format (fig. 5(c)). As shown in figure 5(b), the semilogarithm plot tends to successfully 
portray the faster, lower temperature results, but it fails to account for the higher temperature, slower strain rate tests 
(i.e., the 1400 K creep data, fig. 5(b)). The logarithm–logarithm format (fig. 5(c)), on the other hand, is capable of 
accounting for the slower, high temperature creep results but not the faster, lower temperature data.  
 Where appropriate, the σ- ε� -T data for all the alloys were fitted by linear regression techniques to either a 
temperature-compensated exponential law 

 ε� =  A exp(Cσ)exp(–Q/(RT)), (1) 

or a temperature-compensated power law,    

 ε�  =  A σnexp(–Q/(RT)), (2) 

where A is a constant, C is the stress constant, n is the stress exponent, Q is the activation energy for deformation 
and R is the universal gas constant. The values for A, C, n, Q and the standard deviations for the stress constant (δC), 
stress exponent (δn) and activation energy (δQ) as well as the coefficient of determination (Rd

2) for each fit are given 
in table I. In addition this table notes which data points were not used in these regression analyses. The calculated 
fits for the as-cast alloy and Ni-33Al-31Cr-3Mo DS at 50.8 mm/h are presented as curves in figures 5(a) to (c)  
respectively. These lines illustrate the valid range for each regression equation, and they visibly show the good 
ability of either equations (1) or (2) to describe the data which is confirmed by the relatively high Rd

2 values (>0.96) 
for each fit in table I. 
 Although either equations (1) and (2) can describe the data for each material condition, examination of the fit 
parameters for Ni-33Al-31Cr-3Mo DS at rates from 12.7 to 508 mm/h show a wide range in values even though all 
six alloys possess similar strengths at each test temperature (fig. 4). For example from the temperature-compensated 
exponential law fits the stress constants vary from 0.0294 to 0.0363 and the activation energies from –452 to  
–582 kJ/mol; likewise from the temperature-compensated power law analyses n ranges from 4.43 to 5.61 and  
Q from –405 to –540 kJ/mol. Because of  the similarity of strength among the versions of DS Ni-33Al-31Cr-3Mo, 
this large range in descriptive parameters is probably an artifact of the least squares  approach. 
 To determine if any one directional solidification growth rate had a strength advantage, the individual sets of 
data were tested against each other employing a dummy variable in a multiple linear regression analyses. Because 
interest in DS Ni-33Al-31Cr-3Mo is mainly directed toward its slow creep behavior, this analysis was based on that 
range of data which could be successfully described by the temperature compensated power law (eq. (2)). To this 
end, appropriate data from two growth rates were initially tested for a difference; if no difference was found, the 
sets were joined and tested against flow stress–strain rate–temperature results for another growth rate. When a 
difference was found, this group of data was set aside until all seven growth rates were tested. Finally the joined set 
of data was retested against those perceived to be different to determine if the discrepancy was persistent.   
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 The results from the statistical analyses to differentiate 1200 to 1400 K creep strength on the basis of directional 
solidification growth rate are shown in figure 6. In the temperature compensated power law regime six of the seven 
DS rates (7.6, 12.7,  50.8, 127, 254 and 508 mm/h, open symbols in fig. (6)) possessed 1200 to 1400 K compressive 
properties which could not be separated from one another, where 

 ε�   =  1000 σ4.99 exp(–487.3/(RT)) (3) 

 The solid curves in figure 6 illustrate the fit of equation (3), and they can be compared to the behavior of  
Ni-33Al-31Cr-3Mo DS at 25.4 mm/h (solid symbols) which demonstrates a small strength advantage over the other 
six growth conditions. While the behavior of the 25.4 mm/h alloy is accurately characterized by n = 5.61 and  
Q = –539.4 kJ/mol (Rd

2 = 0.991, table I), use of a dummy variable can force a fit to have the same stress exponent 
and activation energy as equation (3). Thus the behavior of Ni-33Al-31Cr-3Mo DS at 25.4 mm/h can be reflected 
by a lower pre-exponent term, where  

 ε�   =  519 σ4.99 exp(–487.3/(RT)) (4) 

which corresponds to an ~14 percent strength advantage, as illustrated by the dashed lines in figure 6 which closely 
reproduce the experimental results. Taken together equations (3) and (4) are able to describe the temperature com-
pensated power law characteristics of Ni-33Al-31Cr-3Mo directionally solidified over a 60 fold range in growth 
rates with a Rd

2 of 0.947 and δn = 0.14  and δQ = 18.1 kJ/mol. 
 
 

DISCUSSION 
 
 Over the current range in testing (figs. 4 and 6) the 1200 to 1400 K strength of Ni-33Al-31Cr-3Mo DS at  
25.4 mm/h is statistically slightly better than that observed for slower or faster growth rates. Comparison of this 
improvement to the detailed microstructural measurements made on transverse sections by Raj and Locci (ref. 14) 
and the estimates of the minimum grain/cell length in the longitudinal/DS growth direction (fig. 7) do not reveal any 
obvious microstructural feature responsible for the increase. Neither the minimum grain/cell length, average cell 
diameter, intercellular region width (area fraction), interlamellar spacing nor NiAl lamella width for the alloy grown 
at 25.4 mm/h display any characteristic which separates it from other DS rates. Thus, the reason for the additional 
strength of the alloy grown at 25.4 mm/h is not known; most certainly, if there is further interest in this alloy 
system, more bars should be directionally solidified at this velocity and tested to confirm the current behavior. 
 With regard to the elevated temperature strength of NiAl-31Cr-3Mo, the 1200 to 1400 K compressive data in 
figure 4 indicate that directional solidification does produce a significant strength increase compared to simple 
casting.  Furthermore, as illustrated by the 1273 K creep data in figure 8, directional solidification of NiAl-34Cr and 
NiAl-33Cr-1Mo (ref. 4) vastly improves the properties in comparison to single- (ref. 11) and poly- (ref. 10) 
crystalline NiAl, polycrystalline Cr (refs. 12 and 13) or a powder metallurgy processed very small grain size NiAl 
(157 or 10 µm) containing 27 at.% Cr in the form of 1.7 or 3.5 µm particles (ref. 15). While the results in figures 4 
and 8, as well those for other NiAl-34Cr eutectics with or without Mo additions (refs. 3 to 9), demonstrate that 
directional solidification is effective, the mechanism(s) for improvement are not clear. Figure 9 illustrates the com-
pressive properties for several DS NiAl-(Cr,Mo) alloys at/near 1300 K, and, even though the individual stress 
exponents range from ~5.6 to 8.2, the overall behavior suggests that, to a good first approximation, directionally 
solidified NiAl-34Cr, NiAl-33Cr-1Mo, NiAl-31Cr-3Mo and NiAl-28Cr-6Mo all possess equivalent strengths. Thus, 
while there are many significant differences among these DS eutectics,1–4 it appears that strengthening might have a 
common origin. 
 
1Composition, where up to 20 percent of the Cr atoms have be replaced by Mo. 
2Microstucture, where, for example, in NiAl-33Cr-3Mo (fig. 7, (ref. 14)) and NiAl-31Cr-1Mo (ref. 16) transverse sections have revealed mm 
    diameter planer eutectic grains without intercellular regions and ~200 µm diameter cells with ~20 µm thick intercellular regions.   
3 Second phase morphology (refs. 2 and 3), where DS NiAl-34Cr has Cr fibers in a NiAl matrix, while the Mo-modified versions are composed  
    of alternating lamella of NiAl and α-(Cr,Mo). 
 4 Growth directions (refs. 2 and 3), where NiAl and Cr in DS NiAl-34Cr have [001] growth axes and matching (100) planes, but NiAl and  
    α-(Cr,Mo) in the Mo-modified versions have [111] growth axes and matching (refs. 11 and 2) interface planes. 
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Kollura and Pollock (ref. 17) have recently applied numerical analysis to model creep of DS NiAl-34Cr at  
1273 K, and they basically concluded that creep parallel to the Cr fiber axis takes place by plastic deformation of 
the NiAl matrix which transfer load to elastic Cr fibers. As partial support for this mechanism, they calculated much 
higher creep rates than those measured in this eutectic if it was assumed that the Cr-fibers crept at a rate one 
hundredth of that for the NiAl matrix. Additionally, they cited transmission electron microscope (TEM) evidence  
(ref. 18) that shows (1) the Cr fibers were dislocation-free and (2) no substantial differences in the NiAl substructure 
existed between deformed NiAl-34Cr and single phase NiAl.   
 Their latter contention is at odds with other observations of substructure in NiAl deformed at elevated temper-
ature, where, for example, it was demonstrated that doping NiAl with 0.09N will produce a distribution of  
AlN particles which can anchor a small subgrain structure (ref. 19). In fact the AlN particles forced the matrix to 
behave as a constant substructure material which was stronger than single phase NiAl and essentially followed the 
behavior predicted by Sherby, et al., (ref. 20) with a high stress exponent (n ≈ 8) and activation energy near that for 
volume diffusion. If subgrains do develop in NiAl during the elevated deformation of DS NiAl-(Cr,Mo) eutectics, 
then the NiAl/α-(Cr,Mo) interfaces should act as pinning points which would force the subgrains to be of the same 
dimension as the lamella thickness (~1 µm, fig. 7) and lead to constant structure strengthening. In fact this was the 
conclusion of Jimenez, et al., (ref. 15) in NiAl-27Cr to account for an n = 8 regime, where 1.7 µm diameter  
Cr particles stabilized 1.5 µm diameter NiAl grains which restricted the subgrain size to ≤1.5 µm. 
 Since well developed subgrains have also been found in crept pure Cr (ref. 12), one could anticipate substruc-
ture strengthening via pining at Cr(Mo)/NiAl interfaces in the Cr fibers or α-(Cr,Mo) lamella. However, in view of 
Kolluru’s observation of dislocation-free Cr fibers after 1273 K creep (ref. 17) and the absence of dislocations in  
1.7 or 3.5 µm diameter Cr particles in NiAl-27Cr after elevated temperature deformation (ref. 15), this might not be 
the case. While the absence of dislocations in Cr was viewed to be evidence of elastic behavior (ref. 15 and 17), 
other interpretations of dislocation-free fibers/particles in the deformed materials are possible. For example if Cr 
offers very little resistance to dislocation motion within the fiber, once the dislocation is through the interface, it 
could quickly glide across and leave. The resistance to glide should be equal to the Orowan stress σO which is 
approximately Gb/l, where G is the shear modulus, b is the magnitude of the burgers vector and l is the fiber 
diameter/lamella thickness. From the G,b values for Cr given by Frost and Ashby (ref. 21) at 1300 K, σO =  
24.3/l Pa•m which would range from about 8 MPa for a 3 micron diameter/spacing to 50 MPa for a 0.5 micron 
diameter/spacing. In view of the ~1.5 µm Cr-fibers diameter (refs. 3 and 4), the lamella thickness (fig. 7) and the 
1300 K strength levels demonstrated for the DS NiAl-(Cr,Mo) eutectics in figure (9), the fibers/plates should not 
restrict glide. A similar conclusion can also be drawn for NiAl without an internal structure, where, from the G,b 
values for NiAl reported by Noebe, Bowmann and Nathal (ref. 22), the Orowan stress at 1300 K is given by 
σO = 15.7/l Pa•m which corresponds to ~5 MPa at a 3 micron spacing and 31 MPa at 0.5 microns. 
 The limitation of Cr-fibers to only elastic deformation during elevated temperature creep of DS NiAl-34Cr is 
also drawn into question by several other studies. Examination of 1200 to 1400 K compressive creep behavior of 
cryomilled NiAl containing about 10 vol % Cr (ref. 13) indicated that the strength of these composites followed the 
Rule-of-Mixtures, where Cr deformed at the rates described by Stephens and Klopp (ref. 12). A similar observation 
was made by Venkatesh and Dunand (ref. 23), who studied the elevated temperature compressive properties of 
continuous, unidirectional W-wires imbedded in NiAl, and they found that the creep strength of composites 
containing from 5 to 20 vol % W could be described by the Rule-of-Mixtures. Lastly by analogy to W wire, one 
would expect substructure free Cr-fibers to be relatively weak and prone to deformation since recrystallization of 
worked W-wires has been shown to severely reduce their creep strength (refs. 23 and 24). 
 Clearly, there is a need for detailed TEM studies of creep deformed directionally solidified NiAl-(Cr,Mo) 
eutectics to increase our understanding of deformation and strengthening in these materials. In reality, very little is 
known about dislocation structures in any of these alloys. To date the available information consists of the 
observation of an interfacial network of dislocations (refs. 3, 5, 25 and 26) to accommodate the semicoherent 
interface between NiAl and α-(Cr,Mo) in as-grown eutectics and the citation of no unusual substructure in NiAl nor 
dislocations in Cr-fibers in crept NiAl-34Cr (ref. 17). Any future effort to examine the behavior of DS NiAl-
(Cr,Mo) at elevated temperature should include a commitment for a through TEM analysis. 
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SUMMARY OF RESULTS 
 
 Elevated temperature compressive flow strength–strain rate properties of Ni-33Al-31Cr-3 Mo between  
1200 and 1400 K have been measured for alloys directionally solidified at rates ranging from 7.6 to 508 mm/h.  
All the eutectics possessed statistically alike strength levels except for the alloy grown at 25.4 mm/h which was 
slightly stronger. While the microstructure was dependent on the growth rate, no microstructual reason could be 
found for this improvement.  
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TABLE I.—DESCRIPTIONS OF THE FLOW STRESS–STRAIN RATE–TEMPERATURE BEHAVIOR FOR 

AS-CAST  AND DIRECTIONAL SOLIDIFIED  Ni-33Al-31Cr-3Mo. 
(a) Temperature compensated exponential law 

Growth 
velocity, 

mm/h 

A, 
s–1 

C δC Q, 
kJ/mol 

δQ Rd

2 Date points not utilized in 
 the analyses 

7.6 2.93×1016 0.0419 0.0021 –627.1 37.1 0.981 1200 K > 10–5s–1  
12.7 3.97×1011 0.0307 0.0017 –480.4 34.1 0.974  1200 K – 10–4s–1, 1300 K < 10–7s–1 

& 1400 K < 10–7s–1 
As Cast (12.7) 4.59×105 0.0391 0.0022 –326.7 30.3 0.973  
25.4 3.03×1014 0.0363 0.0024 –582.3 49.7 0.966  1200 K > 10–5s–1 and 1300 K – 10–3s–1  
50.8 5.96×1011 0.0356 0.0014 –498.8 28.4 0.982 1400 K < 10–7s–1 
127 2.34×1011 0.0331 0.0012 –490.4 22.2 0.988 1200 K –10–4s–1 
254 1.31×1013 0.0334 0.0013 -533.7 24.4 0.985  
508 2.06×1010 0.0294 0.0018 -451.6 35.7 0.968  

(b) Temperature compensated power law 
Growth 
velocity, 

mm/h 

A, 
s–1 

n δn Q, 
kJ/mol 

δQ Rd

2 Date points not utilized in 
 the analyses 

7.6 1.29×104 6.37 0.38 –588.2 38.0 0.977 1200 K > 10–5s–1 and 1300 K – 10–3s–1 

12.7 9.21 4.43 0.20 –405.1 29.9 0.989 1200 K > 10–5s–1, 1300 K > 10–4s–1 
and 1400 K – 10–3s–1 

As Cast (12.7) 0.714 4.83 0.33 –374.7 31.8 0.971 1200 K –10–4s–1 and 1300 K – 10–3 s–1 
25.4 3.05×103 5.61 0.18 –539.4 24.3 0.991 1200 K > 10–5s–1 and 1300 K – 10–3s–1  
50.8 5.96×101 4.88 0.16 –450.0 22.4  0.989  1200 K > 10–5s–1 and 1300 K – 10–4s–1  
127 1.47×101 4.53 0.35 –475.0 35.2  0.975  1200 K > 10-5s-1  
254 2.20×103 5.58 0.42 –531.2 39.9  0.965  1200 K > 10–5s–1 and1300 K – 10–3s–1  
508 4.27 5.58 0.41 –460.1 34.7  0.969 1200 K – 10–4s–1 and 1300 K – 10–3s–1 
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20 µm(b)(a) 20 µm

(c) 10 µm

Figure 1.—Transverse light optical, unetched microstructures of the eutectic alloys. (a) Ni-33.3Al-31.2Cr-2.9Mo
   directionally solidified at 7.6 mm/h, (b) Ni-33.9Al-30.8Cr-2.9Mo directionally solidified at 50.8 mm/h and
   (c) as-cast Ni-33.3Al-31.1Cr-3.0Mo.
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Figure 2.—Typical true compressive stress-strain curves for Ni-33Al-31Cr-3Mo at 1300 K obtained
   via constant velocity testing at 1300 K as a function of the nominally imposed strain rate. (a) as-cast
   Ni-33.3Al-31.1Cr-3.0Mo and (b) Ni-33.0Al-32.2Cr-3.0Mo directionally solidified at 12.7 mm/h, where
   the set of open and filled symbols represent data from near duplicate test conditions.
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Figure 3.—Typical 1300 K and 1400 K compressive
   creep curves as a function of engineering stress for
   Ni-33.9Al-30.8Cr-2.9Mo directionally solidified at
   50.8 mm/h.
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Figure 4.—True compressive flow stress-strain rate behavior for Ni-33Al-31Cr-3Mo as a function of the
   directionally solidification growth rate at (a) 1200 K, (b) 1300 K and (c) 1400 K.
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Figure 5.—True compressive flow stress-strain rate-temperature behavior for (a) as-cast
   Ni-33.3Al-31.1Cr-3.0Mo and (b,c) Ni-33.9Al-30.8Cr-2.9Mo directionally solidified at
   50.8 mm/h. Data points from constant velocity testing are shown as open symbols,
   while constant load creep test results are given as solid symbols.



12NASA/TM—2001-211306

Minimum grain/cell length

Cell diameter

Intercellular boundary width

Interlamellar spacing

NiAl 
plate 
thickness

Intercellular 
region area 
fraction

0.1

10 000

10 100 1000
Growth rate, mm/h

1

10

100

1000

M
ic

ro
m

et
er

s/
ar

ea
 f

ra
ct

io
n

Figure 7.—Estimated grain/cell lengths, average cell
   diameter, intercellular region width, interlamellar
   spacing, NiAl plate thickness and area fraction of
   the intercellular region for directional solidified
   Ni-33Al-31Cr-3Mo as a function of growth rate. 
   Intercellular regions were not formed in the alloys
   directionally solidified at 7.6 and 12.7 mm/h and
   the grain diameters for these two conditions
   were > 1 mm.
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Figure 6.—Comparison of the true compressive
   flow stress-strain rate-temperature properties
   of Ni-33Al-31Cr-3Mo directionally solidified at
   7.6, 12.7, 50.8, 127, 254, and 508 mm/h (open
   symbols) with those for the alloy grown at
   25.4 mm/h (filled symbols).
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   solidified NiAl-34Cr based eutectics to those for
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   and a two phase polycrystalline NiAl-27Cr mixture.
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